EMC Event Sept 2023

PCB Topics and Tips for Better EMI and SI Performance

John Severson, PE ESDI

© 2023 ESDI

Electronic & Software Design, Inc.

- John R. Severson, PE
- President and Principal Engineer, ESDI
- 35+ years designing electronic circuits, systems PC boards, RF, Design for EMC, and software
- Broad experience in many markets
 - Military Electronics
 - Analog/Digital Instrumentation, Metrology
 - Medical Image processing and graphics
 - CCTV, Analog and digital audio, video and security
 - Adaptive technology for persons with disabilities
 - Agricultural IoT, specialty RFID, and RF modules

Electronic & Software Design, Inc.

- John Severson, PE 30 years designing electronic systems and PC boards
- PCBs with high speed logic, precision mixed signal, wireless, video, CCD/digital imaging, graphics, LCD display monitor controllers
- Embedded Microcontrollers and Linux Software
- Design for EMC, RF Modules integration, RFID systems
- SolidWorks (3D) and Altium Designer

PCB Topics and Tips for Better EMI and SI Performance

- The focus of this presentation is on some key issues to improve performance of PCB layouts from an EMI, Signal (and power) Integrity perspective.
- There are many commonalities, and often following the tips for EMI can improve SI and vice-versa.
- **PI** is a win for **both**, and for board **performance** and **reliability** in general
- Some Practical Tips

EMI / EMC Issues

- EMI requires both a noise source and an antenna.
- **Digital signals** and **switching power** supplies have **high harmonic content**.
- EMI problems are most often from common mode noise
- **Crosstalk** noise from a source can **couple** onto a **potential antenna**
- Ground or Power Bounce lead to common mode noise
- For **EMI**, **uA** and **uV** can be problematic. **Immunity** can encounter **A** and **kV** levels.

SI - Signal Integrity Issues

- **Distortion** Attenuation, Noise, Timing distortion, Bandwidth limiting -- Parasitics
- **Reflections** (impedance discontinuities)
- Crosstalk between signals affects data and timing
- Ground or Power Bounce distort signals and timing
- Power supply **distribution issues** or **collapse**
- Interference (Self and System EMC)

Some EMI and SIPI Issues in Common

- The Hidden Schematic real parts have parasitics
- Fast Rise Times and High Clock Speeds magnify the issues
- **Impedance discontinuities** (and failure to control the **return path**) reduce SI and increase EMI
- Poor and Inadequate Power Bypassing reduce SI and increase EMI
- Balancing (differential) improves both SI and EMI

Some EMI and SI Divergent Issues

- EMI Filters limit bandwidth to reduce harmonics Can reduce signal integrity if too aggressive
- A few mV of noise is unlikely to cause SI issues, but a few uV of noise can cause an EMI failure.
- Faster Rise Times are needed for high data rates but also significantly increase problematic harmonics for EMI
- (My observation is that SI is generally more easily modeled and simulated than EMI)

Frequency, Wavelength, and the Time Domain

• $\lambda = 300 / f(MHz)$ in meters (in air)

 λ is less in PCB ~ $\frac{1}{\sqrt{\epsilon_r}}$

- Consider the design at DC 1MHz 100MHz 1GHz etc.
- The maximum spectrum from a digital signal can be estimated

Rise Time, Frequency and Scale

Normal and Common Mode

• **Capacitive** (Electric Field)

• Inductive (Magnetic Field)

• Common (Shared) Impedance

Simplified Real Component Model for SMT ceramic capacitors

Parasitic characteristics of capacitor and trace/ via. The graph shows a sample "self-resonance" where impedance rises after hitting a minimum.

Trace and Via RF Impedance

A typical (16 mil) via inductance $L \approx 0.9$ nH

For a 3/4" trace and a single via, L \approx 13 nH 1t 100 MHz, XL \approx 8 Ω

A very short, wide trace and multiple vias could be 10X less!

Transmission Line propagation

Pulse travels down the line...

Building field as it propagates...

When it arrives at the end, a reflection occurs it there is an impedance mismatch.

The Reflected pulse travels back toward the source, altering the field as it goes

The Reflected Pulse Propagates back toward the Source...

This example shows a negative going pulse since the load was low Z.

What if the source was low Z and the load High Z...

Impedance Discontinuities can look like "Ringing"

Common Planar Transmission Lines

Trace over GND Plane – the Microstrip T-Line

Trace Impedance

- Reasonable approximate formulas exist for **Microstrip** and **Striplines**.
- Use of a 2D field solver is much better and is highly recommended Built into Altium *Designer*.
- There are online 2D solver options.

2D Field Solver Example

PC Board Stack-up

- Good **PCB Stack Up** is a **must do** starting point for **good EMI and SI** performance
- Think of the **stackup** as the **foundation**, like for building
- Most important is clean reference (gnd) planes. They are essential for low return impedance, controlled impedance traces, effective bypassing, minimizing ground bounce, and reducing common mode noise.
- All **high speed routes** should be over an **uninterrupted reference plane.**

Avoid Impedance Discontinuities!

- **Routing** over a **gap** in the **plane** or a "**Swiss Cheese**" Reference Plane
- Changing Reference Planes (e.g., via to another layer)
- A change of line width on the same layer
- Stubs
- **Un-terminated** Transmission Lines

Trace over continuous ground plane – Microstrip – RF return current follows signal

Trace over continuous ground plane – Microstrip – RF return current follows signal

so long as the ground plane is *continuous*.

Trace over discontinuous ground plane -routing over gaps!

A large loop is created, currents are no longer balanced, and a common mode current is introduced in the ground plane.

... Even worse with isolated planes

Create a low impedance path for RF return currents

Changing Reference Planes

Changing Reference Planes

Changing Reference Planes

Case 2: Solution: Add GND via(s) between the reference planes adjacent to the signal via to provide a low RF impedance for the return. – **Even better – quad via surround of signal**

Isolated (e.g., power) Reference Planes

Case 3: Signal is via'd from a ground reference plane to an isolated (e.g., power) plane... No low impedance path for the RF return current.

Isolated (e.g., power) Reference Planes

Some Tips

- Keep stubs after terminators very short
- Route through and terminate after pins for higher speed signals
- Route pairs in a balanced manor
- Use on-chip termination for very high speed signals
- If you must change layers, keep symmetry
- On Single Ended, place a GND via between the reference planes adjacent
- Even better: Use a Quad Via pattern

Summary: Avoiding the Discontinuous Ground Issues

- Use Ground Plane(s). If possible, avoid gaps in it.
- Don't route across gaps in planes or change reference planes without ensuring a low RF impedance path at or near the via.
- Most important for **high rise-time, high duty cycle**, but **all** signals can cause EMI!
- Route high speed traces and differential pairs on a single layer if possible.

High Ground Impedance and Ground Bounce

- Switching currentsare coupled to otheroutputs throughcommon impedance
- Low speed signals still can contain RF
- Must keep ground impedance low!

Good Bypass is Essential

Why Bypass?

- Local HF caps provide the peak currents during switching
- Zcap, Zlead, and Zint must all be low at RF
- VCC bulk supply RF impedance is less important

4. High PDN Impedance and Power Bounce

- Switching currents are coupled to outputs From VCC.
- Low speed signals still can contain RF
- Must keep PDN impedance low!
- Bypass Caps Essential

Bypass Layout for lower RF Impedance

Note low-Z from power pin to cap and also from cap to GND

Practical chip example – Bypass caps on opposite side

(Based on a Reference Design)

- Ground area under chip and return GND pins to
 this.
- Stitch all ground vias to the continuous ground plane.
- Make a supplemental ground plane where practical on the bottom layer.
- Power fed from internal planes.

Another Example BGA (caps un bottom side)

- Shortest practical route from BGA pads to Via to Caps.
- Cap immediately Returned to GND under BGA.
- GND Vias include inner GND plane and bottom side GND fill.
- Via in pad option was not available for this, but would reduce inductance.

Tips for Bypass, Ground and Power Bounce

- Minimize Ground and Power Inductance
 - Never share ground vias or traces. In fact use multiple vias. Via inductances in parallel reduce the total.
 - Keep ground traces **short and fat** (3:1)
 - Use a **continuous ground plane close to the routing layer** and use very **low impedance paths** for bypass caps
 - **TIP**: Use series impedance on outputs or IO to reduce peak current spikes.
 - Remember the *ALL* outputs can be affected by ground and power bounce... not just the "fast" signals.

For EMI – Shield or Filter All IO

- Every signal entering or exiting must be shielded or filtered (or both)
- Shielded Cables must connect connector shield to shield enclosure
- **Unshielded** cables (including shielded cables in a non-shielded enclosure) **must** Filter!
- Need to keep common mode noise off cables
- Need to provide **low RF impedance signal return paths** – small loop areas

Example – add a series ferrite and a shunt capacitor

Some options for RF filtering IO

- Series Impedance
 Ferrite or Resistor
- Shunt Cap to Ground reference
- Tee or Pi 3-terminal Filter, F-T Cap
- Common Mode Choke

Common Mode Chokes

- Two windings share magnetic field
- Fields cancel for Normal Mode – Low Z
- Fields add for Common Mode – High Z

• Differential (Normal) signal OK

- Common mode is blocked
- No Ground Needed

Summing up...

- Remember the "Hidden Schematic"
- Start with a **good PCB Stack up** plan -- Pay particular attention to a **solid ground (reference plane)** structure
- Avoid Impedance and Return Path Discontinuities
- Pay close attention to **return currents** and **return current paths**. **Don't unbalance** balanced lines.

Summing up...

- Identify high speed lines and give them priority.
 - Highest speed on single layer
 - Keep **Differential lines** together and **balanced**.
- Take great care in bypassing to keep series impedance at RF *very* low.
- Group (if possible) and Filter all IO

Questions?

Thank You!

Stop by the ESDI table for more Info

Electronic & Software Design, Inc. 6110 Blue Circle Drive, Ste. 245 Minnetonka, MN 55345

John R. Severson, PE 952-935-9459 js@esdimn.com <u>esdimn.com</u>

PCB Layout Topics and Tips for Improved EMI and Signal Integrity performance © 2023 ESDI • The content of this presentation is informational only and intended to provide general guidance. It is provided as-is.

• Use in any particular design is the responsibility of the designer and ESDI cannot guarantee accuracy and assumes no risk or liability whatsoever for its use.